Entropy Measures of Human Communication Dynamics

Jun Tan

What is Human communication? What is the difficulty in studying Human communication?

- temporal Network
- Too many representations:
- event sequences,
- interval graphs,
- time windows ...

Solution: Entropy Three approaches

- event sequences (ES) depicting human interactions
- probability of a node to appear as a speaker
- probability of the event occurrence
- probability of succession appearance

First Approach

If Speaker

$$S_1 = -\sum_{v \in V} p_1(v) ln(p_1(v))$$

Second Approach If Know

$$S_2 = -\sum_{e_{ij} \in E} p_2(e_{ij}) ln(p_2(e_{ij}))$$

Third Approach

succession

$$S_3 = -\sum_{sc \in SC} p_3(sc)ln(p_3(sc))$$

Experiment

Datasets

- face-to-face meetings at HyperText conference
- text messages exchanged between students for 6 semesters (NetSense)
- email communications in the manufacturing company
- face-to-face interactions between patients and hospital staff members.

ExperimentRandom & Realtime

ExperimentReal & Random Comparison

Figure 2. The NetSense dataset, the 1st semester. A) Values of normalized entropies. Solid lines refer to the original event sequence and dashed ones present the average value for the baseline – random sequences. B) Values of non-normalized entropies. C) Z-score for non-normalized second-order entropy with the computed trend and marked standard deviation (gray area).

Second Approach

